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Recursive Mode Matching Method for

Multiple Waveguide Junction Modeling
Olivier P. Franza and Weng Cho Chew, Fellow, IEEE

Abstract— The mode matching method is applied to different
waveguide geometries, and a recursive scheme is defined to use

the appropriate number of modes in each section of the wave-
guide. Numerical simulations for different types of applications

are given and show very good results.

I. INTRODUCTION

A GENERAL algorithm has been developed to solve the

multiple waveguide junction problem for any arbitrarily

shaped hollow waveguide, using the mode matching method

in a symbolic matrix formulation. This method is very popular

and has already been used in [1], [5], or [6]. Other methods

are known for solving the waveguide discontinuity problem:

the multimode network representation [2], the finite element

method [3], the scattering matrix representation [4], or the

recurrence modal analysis [8].

The mode matching method requires that the electric and

magnetic fields inside a waveguide be expressed in terms

of an infinite sum of its eigenmodes. After having derived

such expressions in each waveguide, one applies the boundary

conditions at the junction of two different waveguides to match

the fields. Hence, one can derive two matrix equations where

the reflection and transmission operators are the unknowns,

and then solve for them. In the case of a multiple waveguide

junction problem, these operators will be derived at each

junction, and general operators will be defined for the entire

structure.

The problem of the accuracy in the results is mainly due

to the order of truncation of the infinite expansion needed for

the fields, We define a condition on the number of modes in

each section of the waveguide that gives good precision in

the recursive process, whose accurate results are shown using

numerical simulations.

II. THE MODE MATCHING METHOD THEORY

We present the basic formulations of the mode matching

method in the general case of an arbitrarily shaped hollow

waveguide. We will first recall the expressions obtained in

the case of a single junction, as they can be found in [9], and

then derive from the equations the expressions of the complete

structure’s reflection and transmission operators for a double

junction and multiple waveguide junctions.
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A. Single Waveguide Junction

The fields have to be expanded in terms of the eigenmodes

of the waveguide. For the z-component, they can be written as

HZ = ~ fl,~~,(r~)e’~’”z (for TE modes) (1)

‘i

E, = ~ Ei~.i(r~)eiketzz (for TM modes) (2)

%

where @hi(rs ) and @ei(rs ) are the solutions to the wave

equation (V: + k2 – k:, )@Z(TS) = O in two dimensions, with

Neumann and Dirichlet boundary conditions, respectively.

Once the z-components of the eigenvectors are known, the

transverse components can be easily derived using Maxwell’s

equations

[

iweE, .

“ = E &
—.2 x Vs@.~(rs)e’k””z

i

Hi
—ikh~=V,@hi(r~)eikh’zz

+ k:i. 1

(4)

where k~,. = kz – kj?%Zand lc~ia = kz – k~,z.

As shown in [9], after rearranging the terms into two groups,

one for the TE and one for the TM modes, (3) and (4) become

E, = Ult(r,) . e’Kz . e (5)

; X ~~ = –~t(r~) . G.e’Kz .e+ (6)

Then, we define

D, = (Vi, IJj) =
/

dSIi?i(r~).Vj(r.) (7)
S.

L,a = (’Ji, v:) =
/

rwq(r.). w:(r.) (8)
s.

so that we can derive from the boundary conditions a set of

expressions for the operators R and T (see [10])

R = D;l : Lla . (L;a : G1 : D;l : Ll,,

+ L;a : G2 : D;l : L2. )–12L~a : G1 – I (9)
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Fig. 1. (a) Double junction and (b) multiple junction.

and

B. Double Waveguide Junction

In this case, the electric field in the first waveguide can be

written with a generalized reflection operator, as those defined

in [10] for layered media, R12

El. = ‘J~(7-,) , (eiK” + e-iK1z . R12).e. (11)

In the second waveguide, as shown in Fig. l(a), we will write

the solution as a superposition of waves traveling in two

directions

E2. = ‘17j(r2) . (eiK2z . A2 + e-iK2z . B2). (12)

In the third waveguide, an expression similar to the one derived

in (15) can be written

E3~ = ~~(r~) . eiK3’ . A3. (13)

All of the coefficients, A2, B2, and A3, can be found by again

applying matching conditions with physical insight [10], They

finally lead to the expression of the generalized reflection and

transmission coefficients

R12 = R12 + T21 . eiK2(h2–h’) . R23 . eiK2(h2–h’J

. (1– R21 . eiK2(k2-h’J . R23 . eiK2(h2-h’))-’ . T12. (14)

These intermediate results are now applied to the multiple

waveguide junction problem.

C. Multiple Waveguide Junction

By analogy with the double waveguide junction problem,

the following expressions for the field in waveguide j, the

generalized reflection operator fij,j+l, and the amplitude Aj,

can be derived in the case of an N waveguide junction, as

shown in Fig. 1(b)

EjS = ~j(r~) .(eiK~z+e-iK~(z-h~) Rj,j+l .eiK~h~ ) .Aj (15)

%j+I=%j+I + Tj+I,j se
iKi+l(hj+l–hj)

. Rj+I,j+2 . e
iKi+l(h2+1—hj)

. [I - Rj,j+l . eiK~+l(hj+~-h3)

. fij+1,j+2 . eiK’+l(h~+’–h~)]–l . Tj,j+l. (16)

and

Aj = ~-iKIhi-I . (I - Rj,j_l . e~K~(h~-h~-l)

. Rj,j+I . e
iKj(hj —hj–l) —1

)

.Tj-l,j . eiK~-’h~-’ . Aj–l (17)

or, in a more compact form

Aj = Sj–l,j . Aj–l. (18)

With these recursive equations, an algorithm which finds the

expression of the field everywhere in the waveguide, and

the generalized reflection and transmission operators of any

structure composed of arbitrarily shaped waveguides, can be

implemented. The reflection and transmission operators of the

entire set of discontinuities are defined by the following

R = R~,2 (19)

T = TN_l,N ~SN_2,N–1 . . . SI,2. (20)

The expressions of the reflection and the transmission oper-

ators have been derived, with no loss of generality; we just

considered a series of circular hollow waveguides. The only

problem is that the mode matching method requires in theory

an infinite series expansion of the fields. In the numerical

implementation, we will have to truncate the expansion of

the fields; the choice of the number of modes is very difficult.

One solution is to determine numerically, by trial-and-error,

the minimum number of modes needed in the three expansions
(Ul, ‘J72,and q.). But there are also methods in the literature

that give conditions on these numbers. Therefore, a recursive

scheme can be deduced to find them; in fact, it would have

been impossible to do it numerically in the case of a multiple

waveguide junction.

III. OPTIMIZATION OF THE TRUNCATION PROBLEM

The main problem of the mode matching method is the

determination of the number of modes necessary to obtain

an accurate result. It can be shown by integral equation

formulation [10], if N is large enough, that the following

relations have to be satisfied
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Fig. 2. Geomet~ of the circular waveguide stopband filter.

where Pi is the number of modes in region i, IV is the number

of modes on the diaphragm, di is the size of waveguide i, and

da is the size of the diaphragm.

In the case of a rectangular waveguide, we defined P.,i,

Pv,;, N. and ivv as the number of modes in the x- or

~-directions. In each direction, (21) needs to be satisfied.

Our numerical results show that for lV R 24, the values

obtained for the TElo reflection coefficient are very good. This

represents approximately four modes in each direction. For

multiple waveguide junctions, we use the following equations

to find the number of required modes. In the case of a

rectangular waveguide, in the z- and y-directions

PC, I PZ,2 Nz PY,I PY,2 ~
—= —= —

bl=bz= b.”
(22)

al az aa ‘

In the case of a circular waveguide, in the p- and @directions,

PP,I PP,2 NP ~= &_N4,—= —= — (23)
al a2 aa ‘ al az aa

Equations (22) and (23) are similar to (21), but are applied

to each dimension of the waveguide section, because these

dimensions (x and y for the rectangular case, p and # in

the circular case) are independent of each other in the basis

expansion. The process is repeated for each new junction using

the preceding values.

IV. NUMERICAL RESULTS

This section shows numerical results in comparison to those

found in the literature. We will consider complex geometries

with ten or more discontinuities. They show the capability of

the waveguide junction modeling theory and its applications.

The circular waveguide filter example has been taken from

[5], and our results show very good agreement. The geometry

of the structure (see Figs. 2 and 3) is such that the waveguide

operates as a filter for a certain range of frequencies, that are

only determined by the geometry of the waveguides, as shown

on Fig. 4. The case of the corrugated waveguide polarizer has

been checked with [6] and [7] and shows good agreement. The

~ pr-._--.---a-o.--.----.-_--------_*-.—-—.—.—.—

—
a. = 16.269 mlm t = 0.2! mm
al = 6.718 mm 11= 10<)907mm

a2 = 3.888 mm lZ = 11(,142mm

Fig. 3. Numerical lengths of the circular waveguide stopband filters.
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Fig. 4. Return loss of the circular waveguide filter, with its drree stopbarrd
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Fig. 5. Geometry of a profiled depth corrugated waveguide polarizer.

symmetric geometry is given in Fig. 5, where d(z) is known

as the profile function and defines the slot depth of the
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TABLE I

(a) CORRUGATEDWAVEGUIDE SLOT DEPTHS AND (b) LOW-PASS FILTER LENGTHS

Size in mm

19.05

19.05
16.62

14.18

11.75

9.32

8.11
21.48

1.94

3.72
4.51

Size in mm

17.997
17.997

3.720

0.942
0.279

0.513

0.746

0.980

QuantityQuantity

a

b
e

t

d,

dz

d3
d,

1.214

1.447
1.681

1.914

(a) (b)

o

-lo

-20

:-30

“f
cj -40

-50

-60

I

,,

k“!
I I

‘7010 11 12 13 14 15 16 17 18 19 20

Frequency (in GHz )

-80 I I
10 11 12 13 14 15 16 17 18 19 20

Frequency (in GHz )

Fig. 8. Gain of different waveguide modes for the corrugated circular
waveguide polarizer.

Fig. 6. Gain of different waveguide modes for the corrugated square wave-
guide polarizer.
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Fig. 9. Difference of phase between the TEo 1 and TEI I modes for the
corrugated circular waveguide polarizer.Fig. 7. Gain of different waveguide modes for the corrugated rectangular

waveguide polarizer.

discontinuities. The example analyzed here uses a linear profile

function, which enables us to obtain the slot depths defined

in Table I(a). We consider 30 discontinuities for different

dominant modes in three different cases. The first case is for a

square waveguide geometry, which means that the geometry is

the same in the x- and y-directions, and the results are shown
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1. 1.

Fig. 10. Geometg of the first low-pass filter.
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Fig. 11. Magnitude of S11 for the first low-pass filter.
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Fig. 12. Geometry of the second low-pass filter.

on Fig. 6, where the gain is defined by GdE = 20 log R. For

the results of Fig. 7, we considered a rectangular waveguide

geometry, which means that in the g-direction, the size of the

waveguide is constant. Finally we used a circular geometry,

whose results are shown in Fig. 8. One of the properties of this

kind of waveguide structure is that the differential phase shift

Ad between two similar modes (TEol and TE1l for instance)

is continuous as a function of the frequency as shown on

Fig. 9, where the horizontal lines show the 90° (+2°) phase

shift area.

Three low-pass filters are finally considered and show good

agreement with [1]. The first waveguide filter considered is

rectangular. Its geometry is given in Fig. 10. The example

analyzed here is an array of capacitive step that becomes a

low-pass filter device. The structure has 28 discontinuities;

their lengths are presented in Table I(b). From Fig. 11, we

can see that the structure is acting as a low-pass filter for the

TElo mode. Ten new elements are added to the structure, as

shown in Fig. 12. The result is given in Fig. 13, where it can

be seen that the second structure has a slightly higher cut-off

‘ r————— r

_,~L———~———~
8.0 8.5 9.0 9.3 10.0 10.5 11.0 11.5 12.0 12.5 13.0

Frequency (in GHz)

Fig. 13. Magnitude of S1~ for the second low-pass filter.

Fig. 14. Geometry of the thiid low-pass filter.
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Fig. 15. Gain of some TE modes of the third IIow-pass filter.

frequency. Finally, the simpler structure of Fig. 14, with cir-
cular waveguide elements, gives the results shown in Figs. 15

and 16. We also show the phase of the reflection coefficient of

some modes in Fig. 17. On the range of frequency [8.0 GHz,

13.0 GHz], the structure behaves as a phase shifter for most

of the modes.
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Fig. 16. Gain of some TMmodes of thethird low-pass filter.
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Phase of some modes of the third low-pass filter.

V. CONCLUSION

very powerful method of multiple waveguide junction

analysis can be very accurate. The number of unknowns

needed (the number of modes) is not too large (~ % 24

for the rectangular case, ~ w 30 for the circular case). The

complexity of the algorithm is then O(Al~3), where Al is

the number of discontinuities. For each iteration, we have

to compute four dense reflection and transmission matrices,

which require one matrix inversion and four multiplications.

We are presently working on the improvement of the storage

and the computation of the matrices, and expect to reduce the

complexity to O(All!T2).
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