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Recursive Mode Matching Method for
Multiple Waveguide Junction Modeling

Olivier P. Franza and Weng Cho Chew, Fellow, IEEE

Abstract—The mode matching method is applied to different
waveguide geometries, and a recursive scheme is defined to use
the appropriate number of modes in each section of the wave-
guide. Numerical simulations for different types of applications
are given and show very good results.

I. INTRODUCTION

GENERAL algorithm has been developed to solve the

multiple waveguide junction problem for any arbitrarily
shaped hollow waveguide, using the mode matching method
in a symbolic matrix formulation. This method is very popular
and has already been used in [1], [5], or [6]. Other methods
are known for solving the waveguide discontinuity problem:
the multimode network representation [2], the finite element
method [3], the scattering matrix representation [4], or the
recurrence modal analysis [8].

The mode matching method requires that the electric and
magnetic fields inside a waveguide be expressed in terms
of an infinite sum of its eigenmodes. After having derived
such expressions in each waveguide, one applies the boundary
conditions at the junction of two different waveguides to match
the fields. Hence, one can derive two matrix equations where
the reflection and transmission operators are the unknowns,
and then solve for them. In the case of a multiple waveguide
junction problem, these operators will be derived at each
junction, and general operators will be defined for the entire
structure.

The problem of the accuracy in the results is mainly due
to the order of truncation of the infinite expansion needed for
the fields. We define a condition on the number of modes in
each section of the waveguide that gives good precision in
the recursive process, whose accurate results are shown using
numerical simulations.

II. THE MODE MATCHING METHOD THEORY

We present the basic formulations of the mode matching
method in the general case of an arbitrarily shaped hollow
waveguide. We will first recall the expressions obtained in
the case of a single junction, as they can be found in [9], and
then derive from the equations the expressions of the complete
structure’s reflection and transmission operators for a double
junction and multiple waveguide junctions.
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A. Single Waveguide Junction

The fields have to be expanded in terms of the eigenmodes
of the waveguide. For the z-component, they can be written as

H, =Y Hun(rs)e® >  (for TE modes) (1)

E, = Z E“/Jei(rs)eik”‘z (for TM modes)  (2)

where p;(rs) and 1.;(rs) are the solutions to the wave
equation (V2 + k2 — k2)9,(rs) = 0 in two dimensions, with
Neumann and Dirichlet boundary conditions, respectively.
Once the z-components of the eigenvectors are known, the
transverse components can be easily derived using Maxwell’s
equations
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where k2,, = k¥ — k2, and k2, = k* — kZ,,.
As shown in [9], after rearranging the terms into two groups,
one for the TE and one for the TM modes, (3) and (4) become

E,=Vi(r,) K7 . ¢ (5)
2x Hy = —Ur,) - G- eB7 e ©)
Then, we define
D, = (U, Ty = / dSW;(ry). T (ry) 7
Sa
L, = (U;, Ut) = / dSV,(r,). ¢ (r,) ®)
Sa

so that we can derive from the boundary conditions a set of
expressions for the operators R and T (see [10])

R=D7Y: Ly, - (Lt,: Gi: D7*: Ly,
+ L%, : Go: Dyt Log) 2L, G1— 1 (9)
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Fig. 1. (a) Double junction and (b) multiple junction.

and

T=D;%: Log-(Lt,: Gi: DT*: L1,
+ L4, Go: DIt Log) 12LE,: G1. (10)

B. Double Waveguide Junction

In this case, the electric field in the first waveguide can be
written with a generalized reflection operator, as those defined
in [10] for layered media, R

Eyo = Ui(ry) - (657 4 7 F 7 Ryp) e (1D)

In the second waveguide, as shown in Fig. 1(a), we will write
the solution as a superposition of waves travelling in two
directions

Eps = Uh(ra) - (6527 Ay + 7527 . By).  (12)

In the third waveguide, an expression similar to the one derived
in (15) can be written

E3, = Uh(ry) - €537 . 4. (13)

All of the coefficients, Aa, By, and Ag, can be found by again
applying matching conditions with physical insight [10]. They
finally lead to the expression of the generalized reflection and
transmission coefficients

Rip = Ryp + Ty - eKe(ha—h1)  Roy . oiKa(ha=h)

(I— Ry - etKa(ha—ha) | Ras - eiK2(h2—h1))-1 <Tya. (14)

These intermediate results are now applied to the multiple
waveguide junction problem.

C. Multiple Waveguide Junction

By analogy with the double waveguide junction problem,
the following expressions for the field in waveguide j, the
generalized reflection operator R; ;11, and the amplitude A;,
can be derived in the case of an /N waveguide junction, as

shown in Fig. 1(b)
Ejs = ¢§.(TS).(einZ+e—in(z—hj).Rj7j+1.einhj).Aj (15)

5 iK,jp1(hjy1—h;
Rjj41 = Ryjin + Tjpaj - €0 (hami=ha)

Rji1 jyo - eFirithiri=hs)
I = Rj oy - e (Risa=hi)
5 iKjy1(his1—hy)1—1
cRjyr g - eBonanimhd] 7L Ty 500 (16)
and

A= e~ UGhi-1 ([~ R; i1 . et (hj—hj—1)

Ry et (ki =hj—1)y=1
Tj_1,j- eti—1hj—1 CAj 17
or, in a more compact form
Aj =815 A1 (18)

With these recursive equations, an algorithm which finds the
expression of the field everywhere in the waveguide, and
the generalized reflection and transmission operators of any
structure composed of arbitrarily shaped waveguides, can be
implemented. The reflection and transmission operators of the
entire set of discontinuities are defined by the following

B= R, (19)

T=Tn-1n Sv_an_1°S1a. (20)

The expressions of the reflection and the transmission oper-
ators have been derived, with no loss of generality; we just
considered a series of circular hollow waveguides. The only
problem is that the mode matching method requires in theory
an infinite series expansion of the fields. In the numerical
implementation, we will have to truncate the expansion of
the fields; the choice of the number of modes is very difficult.
One solution is to determine numerically, by trial-and-error,
the minimum number of modes needed in the three expansions
(U, Uy, and ¥,). But there are also methods in the literature
that give conditions on these numbers. Therefore, a recursive
scheme can be deduced to find them; in fact, it would have
been impossible to do it numerically in the case of a multiple
waveguide junction.

III. OPTIMIZATION OF THE TRUNCATION PROBLEM

The main problem of the mode matching method is the
determination of the number of modes necessary to obtain
an accurate result. It can be shown by integral equation
formulation [10], if N is large enough, that the following
relations have to be satisfied

P N P N P P

N i Y 21
LA b d 4 d W
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Fig. 2. Geometry of the circular waveguide stopband filter.

where P; is the number of modes in region 7, NV is the number
of modes on the diaphragm, d; is the size of waveguide 4, and
d, is the size of the diaphragm.

In the case of a rectangular waveguide, we defined P ;,
P,;, N, and N, as the number of modes in the z- or
y-directions. In each direction, (21) needs to be satisfied.
Our numerical results show that for N ~ 24, the values
obtained for the TE reflection coefficient are very good. This
represents approximately four modes in each direction. For
multiple waveguide junctions, we use the following equations
to find the number of required modes. In the case of a
rectangular waveguide, in the x- and y-directions

Ton _Fop _Noo Ba Bz Ny
ay az G b bs ba

In the case of a circular waveguide, in the p- and ¢-directions,
P P N, P, P, N,

pl _ Ze2 _ Do 1ol _ 22 _ V¢ (23)
a1 (453 [+ 79 ai ag Gq

Equations (22) and (23) are similar to (21), but are applied
to each dimension of the waveguide section, because these
dimensions (z and y for the rectangular case, p and ¢ in

the circular case) are independent of each other in the basis .

expansion. The process is repeated for each new junction using
the preceding values.

IV. NUMERICAL RESULTS

This section shows numerical results in comparison to those
found in the literature. We will consider complex geometries
with ten or more discontinuities. They show the capability of
the waveguide junction modeling theory and its applications.

The circular waveguide filter example has been taken from
[5], and our results show very good agreement. The geometry
of the structure (see Figs. 2 and 3) is such that the waveguide
operates as a filter for a certain range of frequencies, that are
only determined by the geometry of the waveguides, as shown
on Fig. 4. The case of the corrugated waveguide polarizer has
been checked with [6] and [7] and shows good agreement. The
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Fig. 3. Numerical lengths of the circular waveguide stopband filters.
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Fig. 4. Return loss of the circular waveguide filter, with its three stopband
poles.

3\\\_-_-

Fig. 5. Geometry of a profiled depth corrugated waveguide polarizer.

symmetric geometry is given in Fig. 5, where d(z) is known
as the profile function and defines the siot depth- of the
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TABLE I
(a) CORRUGATED WAVEGUIDE SLOT DEPTHS AND (b) Low-PAss FILTER LENGTHS

Quantity | Size in mm Quantity | Size in mm
a 17.997 a 19.05
b 17.997 by 19.05
e 3.720 by 16.62
t 0.942 by 14.18
dx 0.279 by 11.75
d, 0.513 bs 9.32
ds 0.746 be 8.11
dy 0.980 br 21.48
ds 1.214 h 1.94
ds 1.447 l; 3.72
d; 1.681 I3 4.51
ds 1.914
@ (b)
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Fig. 9. Difference of phase between the TEg; and TEi; modes for the

Fig. 7. Gain of different waveguide modes for the corrugated rectangular corrugated circular waveguide polarizer.

waveguide polarizer.

discontinuities. The example analyzed here uses a linear profile  dominant modes in three different cases. The first case is for a
function, which enables us to obtain the slot depths defined square waveguide geometry, which means that the geometry is
in Table I(a). We consider 30 discontinuities for different the same in the z- and y-directions, and the results are shown
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Fig. 11. Magnitude of S11 for the first low-pass filter.

Fig. 12. Geometry of the second low-pass filter.

on Fig. 6, where the gain is defined by G4p = 20log R. For
the results of Fig. 7, we considered a rectangular waveguide
geometry, which means that in the y-direction, the size of the
waveguide is constant. Finally we used a circular geometry,
whose results are shown in Fig. 8. One of the properties of this
kind of waveguide structure is that the differential phase shift
Ad¢ between two similar modes (TEg; and TE;; for instance)
is continuous as a function of the frequency as shown on
Fig. 9, where the horizontal lines show the 90° (£2°) phase
shift area.

Three low-pass filters are finally considered and show good

agreement with [1]. The first waveguide filter considered is

rectangular. Its geometry is given in Fig. 10. The example
analyzed here is an array of capacitive step that becomes a
low-pass filter device. The structure has 28 discontinuities;
their lengths are presented in Table I(b). From Fig. 11, we
can see that the structure is acting as a low-pass filter for the
TE o, mode. Ten new elements are added to the structure, as
shown in Fig. 12. The result is given in Fig. 13, where it can
be seen that the second structure has a slightly higher cut-off
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Fig. 13. Magnitude of Sy for the second low-pass filter.
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Fig. 15. Gain of some TE modes of the third low-pass filter.

frequency. Finally, the simpler structure of Fig. 14, with cir-
cular waveguide elements, gives the results shown in Figs. 15
and 16. We also show the phase of the reflection coefficient of
some modes in Fig. 17. On the range of frequency [8.0 GHz,
13.0 GHz], the structure behaves as a phase shifter for most
of the modes.
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Fig. 16. Gain of some TM modes of the third low-pass filter.
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Fig. 17. Phase of some modes of the third low-pass filter.

V. CONCLUSION

This very powerful method of multiple waveguide junction
analysis can be very accurate. The number of unknowns
needed (the number of modes) is not too large (N ~ 24
for the rectangular case, N = 30 for the circular case). The
complexity of the algorithm is then O(MN?3), where M is
the number of discontinuities. For each iteration, we have
to compute four dense reflection and transmission matrices,
which require one matrix inversion and four multiplications.
We are presently working on the improvement of the storage
and the computation of the matrices, and expect to reduce the
complexity to O(MN?).
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